# **C2** Integration

#### 1. June 2010 qu.2

- (i) Use the trapezium rule, with 3 strips each of width 3, to estimate the area of the region bounded by the curve  $y = \sqrt[3]{7+x}$ , the *x*-axis, and the lines x = 1 and x = 10. Give your answer correct to 3 significant figures. [4]
- (ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1]

## 2. June 2010 qu.6

(a) Use integration to find the exact area of the region enclosed by the curve  $y = x^2 + 4x$ , the *x*-axis and the lines x = 3 and x = 5. [4]

(b) Find 
$$\int (2-6\sqrt{y}) \, dy.$$
 [3]

(c) Evaluate 
$$\int_{1}^{\infty} \frac{8}{x^3} dx.$$
 [4]

3. Jan 2010 qu.2

The gradient of a curve is given by  $\frac{dy}{dx} = 6x - 4$ . The curve passes through the distinct points (2, 5) and (*p*, 5).

- (i) Find the equation of the curve. [4]
- (ii) Find the value of *p*. [3]
- 4. Jan 2010 qu.4

## (i) Use the trapezium rule, with 4 strips each of width 0.5, to find an approximate value for

$$\int_{3}^{5} \log_{10} (2+x) dx, \quad \text{giving your answer correct to 3 significant figures.}$$
[4]

(ii) Use your answer to part (i) to deduce an approximate value for  $\int_{3}^{5} \log_{10} \sqrt{2+x} \, dx$ , showing your method clearly. [2]

## 5. Jan 2010 qu.5

The diagram shows parts of the curves  $y = x^2 + 1$  and

 $y = 11 - \frac{9}{x^2}$ , which intersect at (1, 2) and (3, 10). Use integration to find the exact area of the shaded region

enclosed between the two curves.

#### 6. June 2009 qu.4

(i) Find the binomial expansion of  $(x^2 - 5)^3$ , simplifying the terms. [4]

(ii) Hence find 
$$\int (x^2 - 5)^3 dx$$
. [4]

#### 7. June 2009 qu.6

The gradient of a curve is given by  $\frac{dy}{dx} = 3x^2 + a$ , where *a* is a constant. The curve passes through the points (-1, 2) and (2, 17). Find the equation of the curve. [8]

#### 8. June 2009 qu.9

- (i) Sketch the graph of  $y = 4k^x$ , where k is a constant such that k > 1. State the coordinates of any points of intersection with the axes. [2]
- (ii) The point *P* on the curve  $y = 4k^x$  has its *y*-coordinate equal to  $20k^2$ . Show that the *x*-coordinate of *P* may be written as  $2 + \log_k 5$ . [4]
- (iii) (a) Use the trapezium rule, with two strips each of width  $\frac{1}{2}$ , to find an expression for the approximate value of  $\int_0^1 4k^x dx$ . [3]

## (b) Given that this approximate value is equal to 16, find the value of *k*. [3]

- 9. <u>Jan 2009 qu.1</u> Find (i)  $\int (x^3 + 8x - 5) dx$ , [3] (ii)  $\int 12\sqrt{x} dx$ . [3]
- **10.** Jan 2009 qu.4



The diagram shows the curve  $y = x^4 + 3$  and the line y = 19 which intersect at (-2, 19) and (2, 19). Use integration to find the exact area of the shaded region enclosed by the curve and the line. [7]

#### 11. June 2008 qu.5



The diagram shows the curve  $y = 3 + \sqrt{x+2}$ .

The shaded region is bounded by the curve, the *y*-axis, and two lines parallel to the *x*-axis which meet the curve where x = 2 and x = 14.

(i) Show that the area of the shaded region is given by 
$$\int_{5}^{7} (y^2 - 6y + 7) dy.$$
 [3]

(ii) Hence find the exact area of the shaded region. [4]

## 12. June 2008 qu.7

(a) Find 
$$\int x^3 (x^2 - x + 5) dx.$$
 [4]

(b) (i) Find 
$$\int 18x^{-4} dx$$
. [2]

(ii) Hence evaluate 
$$\int_{2}^{\infty} 18x^{-4} dx$$
. [2]

#### **13.** June 2008 qu.9

(b) Use the trapezium rule, with four strips each of width 0.25, to find an approximate value for  $\int_0^1 \cos x \, dx$ , where x is in radians. Give your answer correct to 3 significant figures. [4]

## 14. Jan 2008 qu.2

Use the trapezium rule, with 3 strips each of width 2, to estimate the value of  $\int_{1}^{7} \sqrt{x^2 + 3} \, dx$ . 4]

#### 15. Jan 2008 qu.5

The gradient of a curve is given by  $\frac{dy}{dx} = 12\sqrt{x}$ . The curve passes through the point (4, 50). Find the equation of the curve. [6]



The diagram shows part of the curve  $y = x^2 - 3x$  and the line x = 5.

- (i) Explain why  $\int_0^5 (x^2 3x) dx$  does not give the total area of the regions shaded in the diagram. [1]
- (ii) Use integration to find the exact total area of the shaded regions. [7]

#### 17. June 2007 qu.4

The diagram shows the curve  $y = \sqrt{4x+1}$ .

- (i) Use the trapezium rule, with strips of width 0.5, to find an approximate value for the area of the region bounded by the curve  $y = \sqrt{4x+1}$ , the *x*-axis, and the lines x = 1 and x = 3. Give your answer correct to 3 significant figures. [4]
- (ii) State with a reason whether this approximation is an under-estimate or an over-estimate. [2]

#### **18.** <u>June 2007 qu.6</u>

- (a) (i) Find  $\int x(x^2 4) dx$ . [3]
  - (ii) Hence evaluate  $\int_{1}^{6} x(x^2 4)dx$ . [2]

(b) Find 
$$\int \frac{6}{x^3} dx$$
. [3]

**19.** Jan 2007 qu.3

(i) Find 
$$\int (4x-5)dx$$
 [2]

(ii) The gradient of a curve is given by  $\frac{dy}{dx} = 4x - 5$ . The curve passes through the point (3, 7). Find the equation of the curve. [3]

#### **20.** Jan 2007 qu.5

#### (b) Use the trapezium rule, with two strips of width 3, to find an approximate value for

$$\int_{3}^{9} \log_{10} x dx \qquad \text{giving your answer correct to 3 significant figures.}$$
[4]

## **21.** Jan 2007 qu.10

The diagram shows the graph of  $y = 1 - 3x^{-\frac{1}{2}}$ .

- (i) Verify that the curve intersects the x-axis at (9, 0).
- (ii) The shaded region is enclosed by the curve, the *x*-axis and the line x = a (where a > 9). Given that the area of the shaded region is 4 square units, find the value of *a*. [9]

[1]

## 22. June 2006 qu.3

The gradient of a curve is given by  $\frac{dy}{dx} = 2x^{-\frac{1}{2}}$ , and the curve passes through the point (4, 5). Find the equation of the curve. [6] The diagram shows the curve  $y = 4 - x^2$  and the line y = x + 2.

- (i) Find the *x*-coordinates of the points of intersection of the curve and the line. [2]
- (ii) Use integration to find the area of the shaded region bounded by the line and the curve. [6]
- 24. June 2006 qu.9
  - (i) Sketch the curve  $y = \left(\frac{1}{2}\right)^x$ , and state the coordinates of any point where the curve crosses an axis. [3]
  - (ii) Use the trapezium rule, with 4 strips of width 0.5, to estimate the area of the region bounded by the curve  $y = \left(\frac{1}{2}\right)^x$ , the axes, and the line x = 2. [4]
  - (iii) The point *P* on the curve  $y = \left(\frac{1}{2}\right)^x$  has y-coordinate equal to  $\frac{1}{6}$ . Prove that the *x*-coordinate of *P* may be written as  $1 + \frac{\log_{10} 3}{\log_{10} 2}$ . [4]

#### 25. Jan 2006 qu.6

(a) Find 
$$\int (x^{\frac{1}{2}} + 4) dx$$
. [4]

(b) (i) Find the value, in terms of *a*, of  $\int_{1}^{a} 4x^{-2} dx$ , where *a* is a constant greater than 1. [3]

(ii) Deduce the value of 
$$\int_{1}^{\infty} 4x^{-2} dx$$
. [1]

# **26.** <u>Jan 2006 qu.8</u>

The cubic polynomial  $2x^3 + kx^2 - x + 6$  is denoted by f(x). It is given that (x + 1) is a factor of f(x).

(i) Show that 
$$k = -5$$
, and factorise  $f(x)$  completely. [6]

(ii) Find 
$$\int_{-1}^{2} f(x) dx$$
. [4]

(iii) Explain with the aid of a sketch why the answer to part (ii) does not give the area of the region between the curve y = f(x) and the *x*-axis for  $-1 \le x \le 2$ . [2]

# 27. June 2005 qu.3 (i) Find $\int (2x+1)(x+3) dx$

(ii) Evaluate 
$$\int_0^9 \frac{1}{\sqrt{x}} dx$$
 [3]

[4]